# Cellular Senescence



Cellular senescence is a state of cell cycle arrest that occurs in response to various stressors or stimuli. It is considered an important factor in the development of many age-related diseases and thus has become an important therapeutic target. Focus Biomolecules has assembled an extensive portfolio of small molecule research tools which includes inducers as well as senolytic and senomorphic agents.

#### Senescence Inducers

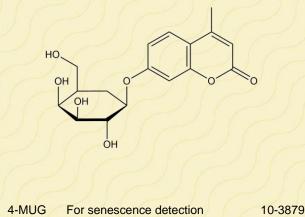
Senescence can be initiated by a large variety of stress-inducing agents (DNA damaging agents for example) some of which are listed below.

| 2',3'-cGAMP        | Endogenous STING agonist         | 10-1639 |
|--------------------|----------------------------------|---------|
| Abemaciclib        | CDK4/6 inhibitor                 | 10-4833 |
| Actinomycin D      | Transcription inhibitor          | 10-2054 |
| Aphidicolin        | DNA polymerase inhibitor         | 10-2058 |
| Decitabine         | DNA hypomethylation agent        | 10-2412 |
| BIBR1532           | Telomerase inhibitor             | 10-3920 |
| Bleomycin          | Induces DNA double strand breaks | 10-2623 |
| Daunorubicin HCI   | DNA damaging agent               | 10-2429 |
| Entinostat         | HDAC inhibitor                   | 10-2131 |
| Etoposide          | Topoisomerase II inhibitor       | 10-1123 |
| Ingenol-3-angelate | PKC activator                    | 10-1244 |
| Mitomycin C        | DNA damaging agent               | 10-1170 |
| Nutlin-3           | MDM2 antagonist                  | 10-1350 |
| PMA                | PKC activator                    | 10-2165 |
| Ribociclib         | CDK4/6 inhibitor                 | 10-4807 |
| RITA               | p53 activator                    | 10-3385 |
| SN-38              | Topoisomerase I inhibitor        | 10-2425 |
| Temozolomide       | Autophagy inducer                | 10-2390 |
| Tenovin-1          | SIRT1/2 inhibitor                | 10-2982 |
| Temozolomide       | Autophagy inducer                | 10-2390 |
| Tenovin-1          | SIRT1/2 inhibitor                | 10-2982 |
| WM-1119            | KAT6A HAT inhibitor              | 10-4013 |
|                    |                                  |         |

### Senolytics

Senolytics are agents which target various prosurvival signaling pathways resulting in the elimination of senescent cells<sup>4</sup>. A variety of senolytic agents are shown below.

| 17-AAG               | HSP90 inhibitor            | 10-1097 |
|----------------------|----------------------------|---------|
| ABT-263 (Navitoclax) | Bcl-2 family inhibitor     | 10-3141 |
| ABT-737              | Bcl-2 family inhibitor     | 10-3661 |
| BPTES                | Glutaminase GLS1 inhibitor | 10-5414 |
| Dasatinib            | Src kinase inhibitor       | 10-2126 |
| Enzastaurin          | PKC, PI3K/Akt inhibitor    | 10-2132 |
| JQ1                  | BRD4 inhibitor             | 10-1584 |


#### Senomorphics

Senomorphic agents are designed to suppress (senostasis) the proinflammatory senescence-assoicated secretory phenotype without killing senescent cells.

| BAY 11-7082 | IKK inhibitor                      | 10-1296 |
|-------------|------------------------------------|---------|
| FK866       | NAMPT inhibitor                    | 10-1109 |
| I-BET762    | BET Bromodomain inhibitor          | 10-4122 |
| Metformin   | AMPK activator                     | 10-2469 |
| ML324       | KDM4 histone demethylase inhibitor | 10-1455 |
| Rapamycin   | mTOR inhibitor                     | 10-1104 |
| Ruxolitinib | JAK/STAT pathway inhibitor         | 10-4511 |
| SB 203580   | p38MAP kinase inhibitor            | 10-2173 |
| SR9009      | REV-ERB agonist                    | 10-1511 |
| SRT1720 HCI | SIRT1 activator                    | 10-4628 |
| Zileuton    | 5-LO inhibitor                     | 10-1098 |

## **Detection of Senescent Cells**

The most widely used biomarker for senescent cells is senescence-associated *β*-galactosidase (SA-β-Gal) which has been identified as being of lysosomal origin<sup>1</sup>. Although some doubts have been raised about specificity SA-β-Gal staining has gained broad acceptance as a marker for senescence<sup>2,3</sup>. 4-MUG or 4-methylumbelliferyl- β-D-galactopyranose is a versatile fluorogenic substrate for SA-β-Gal and is converted to the blue fluorescent 4-methylumbelliferone, Ex: 342 nm and Em; 441 nm,



#### REFERENCES

- 1. Lee et al.(2006) Aging Cell 5 187
- 2. Gary and Kindell (2005) Anal. Biochem. 343 329
- Sosinska et al. (2014) Biogerontology 15 407 3.
- Kirkland and Tchkonia (2020) J. Int. Med. 288 518 4.

400 Davis Dr. Suite 600 Plymouth Meeting, PA 19462 610-994-1134 sales@focusbiomolecules.com focusbiom olecules.com