

Mercodia Glucagon ELISAs

Bibliography

Glucagon ELISA (article no. 10-1271-01)

Alsalim W, Tura A, Pacini G, et al. Mixed meal ingestion diminishes glucose excursion in comparison with glucose ingestion via several adaptive mechanisms in people with and without type 2 diabetes. *Diabetes Obes Metab*. 2015.

Bennet H, Balhuizen A, Medina A, et al. Altered serotonin (5-HT) 1D and 2A receptor expression may contribute to defective insulin and glucagon secretion in human type 2 diabetes. *Peptides*. 2015;71:113-120.

Chow SZ, Speck M, Yoganathan P, et al. Gp130 receptor signaling mediates alpha cell dysfunction in a rodent model of type 2 diabetes. *Diabetes*. 2014.

Hall MJ, Adin CA, Borin-Crivellenti S, et al. Pharmacokinetics and pharmacodynamics of the glucagon-like peptide-1 analog liraglutide in healthy cats. *Domest Anim Endocrinol*. 2014;51C:114-121.

Hedad Masson M, Poisson C, Guerardel A, et al. Foxa1 and Foxa2 regulate alpha-cell differentiation, glucagon biosynthesis, and secretion. *Endocrinology*. 2014;155(10):3781-3792.

Hu J, Wang F, Sun R, et al. Effect of combined therapy of human Wharton's jelly-derived mesenchymal stem cells from umbilical cord with sitagliptin in type 2 diabetic rats. *Endocrine*. 2014;45(2):279-287.

Ilkowitz JT, Katikaneni R, Cantwell M, et al. Adjuvant Liraglutide and Insulin Versus Insulin Monotherapy in the Closed-Loop System in Type 1 Diabetes: A Randomized Open-Labeled Crossover Design Trial. *J Diabetes Sci Technol*. May 2016;1932296816647976.

Komiya C, Tsuchiya K, Shiba K, et al. Ipragliflozin Improves Hepatic Steatosis in Obese Mice and Liver Dysfunction in Type 2 Diabetic Patients Irrespective of Body Weight Reduction. *PLoS One*. 2016;11(3):e0151511.

Lund A, Bagger JI, Wewer Albrechtsen NJ, et al. Evidence of Extrapancreatic Glucagon Secretion in Man. *Diabetes*. 2016.

Malmgren S, Ahren B. DPP-4 inhibition contributes to the prevention of hypoglycaemia through a GIP-glucagon counterregulatory axis in mice. *Diabetologia*. 2015.

Manell H, Staaf J, Manukyan L, et al. Altered Plasma Levels of Glucagon, GLP-1 and Glicentin During OGTT in Adolescents With Obesity and Type 2 Diabetes. *J Clin Endocrinol Metab*. 2016;jc20153885.

Matsuo T, Miyagawa J, Kusunoki Y, et al. Postabsorptive hyperglucagonemia in patients with type 2 diabetes mellitus analyzed with a novel enzyme-linked immunosorbent assay. *J Diabetes Investig*. 2015;In press.

Pedersen MG, Ahlstedt I, El Hachmane MF, et al. Dapagliflozin stimulates glucagon secretion at high glucose: experiments and mathematical simulations of human A-cells. *Sci Rep*. 2016;6:31214.

Soder J, Wernersson S, Hagman R, et al. Metabolic and Hormonal Response to a Feed-challenge Test in Lean and Overweight Dogs. *J Vet Intern Med*. 2016.

Stamenkovic JA, Andersson LE, Adriaenssens AE, et al. Inhibition of the malate-aspartate shuttle in mouse pancreatic islets abolishes glucagon secretion without affecting insulin secretion. *Biochem J*. 2015.

Sterl K, Wang S, Oestricker L, et al. Metabolic responses to xenin-25 are altered in humans with Roux-en-Y gastric bypass surgery. *Peptides*. 2016;82:76-84.

Tricò D, Filice E, Baldi S, et al. Sustained effects of a protein and lipid preload on glucose tolerance in type 2 diabetes patients. *Diabetes Metab*. April 2016.

Wewer Albrechtsen NJ, Hartmann B, Veedfald S, et al. Hyperglucagonaemia analysed by glucagon sandwich ELISA: nonspecific interference or truly elevated levels? *Diabetologia*. 2014.

Wewer Albrechtsen NJ, Veedfald S, Plamboeck A, et al. Inability of Some Commercial Assays to Measure Suppression of Glucagon Secretion. *J Diabetes Res*. 2015;In press.

Glucagon ELISA - 10 µL (article no. 10-1281-01)

Abels M, Riva M, Bennet H, et al. CART is overexpressed in human type 2 diabetic islets and inhibits glucagon secretion and increases insulin secretion. *Diabetologia*. June 2016;1-10.

Albury-Warren TM, Pandey V, Spinel LP, et al Prediabetes linked to excess glucagon in transgenic mice with pancreatic active AKT1. *J Endocrinol*. 2015.

Andersen B, Omar BA, Rakipovski G, et al. Fibroblast growth factor 21 prevents glycemic deterioration in insulin deficient mouse models of diabetes. *Eur J Pharmacol*. 2015;764:189-194.

Atageldiyeva K, Fujita Y, Yanagimachi T, et al. Sodium-Glucose Cotransporter 2 Inhibitor and a Low Carbohydrate Diet Affect Gluconeogenesis and Glycogen Content Differently in the Kidney and the Liver of Non-Diabetic Mice. Peterson JM, ed. *PLoS One*. 2016;11(6):e0157672.

Gilor C, Glock R, Gilor S. Duration of fasting but not diurnal variation affects the response to glucagon in healthy cats. *Domest Anim Endocrinol*. 2015;53:103-107.

Hassing HA, Engelstoft MS, Sichlau RM, et al. Oral 2-oleyl glyceryl ether improves glucose tolerance in mice through the GPR119 receptor. *BioFactors*. 2016.

Hauge-Evans AC, Bowe J, Franklin ZJ, et al. Inhibitory effect of somatostatin on insulin secretion is not mediated via the CNS. *J Endocrinol*. 2015;225(1):19-26.

Hoelmkjaer KM, Wewer Albrechtsen NJ, Holst JJ, et al. A Placebo-Controlled Study on the Effects of the Glucagon-Like Peptide-1 Mimetic, Exenatide, on Insulin Secretion, Body Composition and Adipokines in Obese, Client-Owned Cats. *PLoS One*. 2016;11(5):e0154727.

Kyriazis GA, Smith KR, Tyrberg B, et al. Sweet taste receptors regulate basal insulin secretion and contribute to compensatory insulin hypersecretion during the development of diabetes in male mice. *Endocrinology*. 2014;155(6):2112-2121.

Li J, Yu Q, Ahooghalandari P, et al. Submembrane ATP and Ca²⁺ kinetics in alpha-cells: unexpected signaling for glucagon secretion. *FASEB J*. 2015;29(8):3379-3388.

Malmgren S, Ahren B. Evidence for time dependent variation of glucagon secretion in mice. *Peptides*. 2016.

Manell E, Hedenqvist P, Svensson A, Jensen-Waern M. Establishment of a Refined Oral Glucose Tolerance Test in Pigs, and Assessment of Insulin, Glucagon and Glucagon-Like Peptide-1 Responses. *PLoS One*. 2016;11(2):e0148896.

Oropeza D, Jouvet N, Budry L, et al. Phenotypic Characterization of MIP-CreERT1Lphi Mice With Transgene-Driven Islet Expression of Human Growth Hormone. *Diabetes*. 2015;64(11):3798-3807.

Ren Z, Yang F, Wang X, et al. Chronic plus binge ethanol exposure causes more severe pancreatic injury and inflammation. *Toxicol Appl Pharmacol*. 2016;308:11-19.

Rojas JM, Matsen ME, Mundinger TO, et al. Glucose intolerance induced by blockade of central FGF receptors is linked to an acute stress response. *Mol Metab*. 2015;4(8):561-568.

Rudinsky AJ, Adin CA, Borin-Crivellenti S, et al. Pharmacology of the glucagon-like peptide-1 analog exenatide extended-release in healthy cats. *Domest Anim Endocrinol*. 2015;51:78-85.

Soty M, Penhoat A, Amigo-Correig M, et al. A gut-brain neural circuit controlled by intestinal gluconeogenesis is crucial in metabolic health. *Mol Metab*. 2015;4(2):106-117.

Steenberg VR, Jensen SM, Pedersen J, et al. Acute disruption of glucagon secretion or action does not improve glucose tolerance in an insulin-deficient mouse model of diabetes. *Diabetologia*. 2015.

Tudurí E, Beiroa D, Stegbauer J, et al. Acute stimulation of brain mu opioid receptors inhibits glucose-stimulated insulin secretion via sympathetic innervation. *Neuropharmacology*. 2016;110:322-332.

Wewer Albrechtsen NJ, Kuhre RE, Windelov JA, et al. Dynamics of glucagon secretion in mice and rats revealed using a validated sandwich ELISA for small sample volumes. *Am J Physiol Endocrinol Metab*. May 2016;ajpendo.00119.2016.

MERCODIA GLUCAGON ELISA

article no. 10-1271-01

Intended use

A high quality enzyme immunoassay for the quantification of glucagon in serum, EDTA plasma, P800 stabilized samples and cell culture medium.

Test principle

Mercodia Glucagon ELISA is a solid phase two-site enzyme immunoassay based on the sandwich technique, in which two monoclonal antibodies are directed against separate antigenic determinants on the glucagon molecule. Glucagon in the sample reacts with anti-glucagon antibodies bound to microtitration wells and peroxidase-conjugated anti-glucagon antibodies in the solution.

Summary of protocol

- Add 25 µL Calibrators, controls and samples
- Add 200 µL enzyme conjugate 1X solution
- Incubate 18-22 h (overnight) on shaker at 2-8°C
- Wash plate 6 times
- Add 200 µL Substrate TMB
- Incubate 15 minutes at room temperature
- Add 50 µL Stop Solution
- Shake for approximately 5 seconds on shaker
- Measure at 450 nm

Samples

Serum, EDTA plasma and cell culture medium samples can be used. Currently validated for human, rat and mouse samples. For other species, please contact Mercodia.

Measurement range

1.5 - 120 pmol/L (5 - 414 pg/mL)

Catalog No

10-1271-01 1 x 96 wells

Test characteristics

Sensitivity

The detection limit is 1 pmol/L as determined with the methodology described in ISO11843- Part 4.

Recovery

Recovery upon addition 96-101% (Mean 98%)

Recovery upon dilution 81-96% (Mean 86%)

Precision

Each sample was analyzed in 4 replicates on 39 different occasions.

Sample	Mean value (pmol/L)	Coefficient of variation		
		within assay %	between assay %	total assay %
1	3.0	5.1	8.1	8.5
2	5.2	3.6	9.4	9.5
3	21.9	3.3	7.3	7.5

Performance limitations

Grossly lipemic, icteric or haemolyzed samples do not interfere in the assay.

Specificity

The following cross-reactions have been tested:

Glicentin	<0.8%
Oxyntomodulin	<4.4%
Mini-glucagon	<0.10%
GRPP	<0.0005%
GLP-1 (1-37)	<0.30%
GLP-1 (1-36 amide)	<0.30%
GLP-1 (9-36 amide)	<0.30%
GLP-1 (7-37)	<0.30%
GLP-2	<0.30%

MERCODIA GLUCAGON ELISA – 10 µL

article no. 10-1281-01

Intended use

A high quality enzyme immunoassay for the quantitative determination of glucagon in rat, mouse, porcine and non-human primate (NHP) samples.

Test principle

Mercodia Glucagon ELISA – 10 µL is a solid phase two-site enzyme immunoassay based on the sandwich technique, in which two monoclonal antibodies are directed against separate antigenic determinants on the glucagon molecule. Glucagon in the sample reacts with anti-glucagon antibodies bound to microtitration wells and peroxidase-conjugated anti-glucagon antibodies in the solution.

Summary of protocol

- Add 10 µL Calibrators, controls and samples
- Add 50 µL enzyme conjugate 1X solution
- Incubate 18-22 h (overnight) on shaker at 2-8°C
- Wash plate 6 times
- Add 200 µL Substrate TMB
- Incubate 15 minutes at room temperature
- Add 50 µL Stop Solution
- Shake for approximately 5 seconds on shaker
- Measure at 450 nm

Samples

Serum, EDTA plasma and cell culture medium samples can be used.

Measurement range

2-180 pmol/L (7 - 627 pg/mL)

Catalog No

10-1281-01 1 x 96 wells

Performance limitations

Grossly lipemic or icteric samples do not interfere in the assay. Samples with high levels of hemoglobin (>500 mg/dL) can interfere in the assay.

Test characteristics

Sensitivity

The detection limit is 1.5 pmol/L (5.2 pg/mL) as determined with the methodology described in ISO11843- Part 4.

Recovery

Species	Addition			Dilution		
	Min	Max	Mean	Min	Max	Mean
Porcine	101	118	111	74	114	87
NHP*	96	112	103	85	106	95
Mouse	109	126	118	78	101	85
Rat	114	121	118	71	125	92

Figures in %

*Non-human primate samples kindly provided by Professor Barbara C. Hansen at University of South Florida, USA.

Precision

Each sample was analyzed in 4 replicates on at least 7 different occasions.

Species	Sample	Mean value pmol/L	Coefficient of variation	
			Repeatability %*	Within laboratory %**
Porcine	1	5.4	6.7	12.9
	2	5.9	6.4	13.9
	3	13.2	7.7	8.3
NHP	1	12.6	7.2	12.3
	2	36.9	7.4	12.3
	3	44.7	7.7	10.6
Rat	1	7.3	5.1	10.1
	2	8.8	6.9	16.1
	3	9.6	4.4	17.9

* Within assay variation

** Total assay variation

Specificity

Mini-glucagon	n.d.
Glicentin, human	1.0%
Glicentin, mouse	7.0%
Glicentin, rat	4.0%
Oxyntomodulin, human/rat/mouse	2.0%
Oxyntomodulin, bovine/canine/porcine	n.d.
GLP-1 (7-36)	n.d.
GLP-1 (9-36)	n.d.
GLP-2	n.d.

Mercodia AB is a Swedish biotech company focusing on the development of immunoassays for research within the field of metabolic disorders. Our assays are applicable to both animal and human models and are used for research ranging from basic scientific studies to large pre-clinical and clinical phase trials.

The company was founded in 1991 and is today a world-leading supplier of products to all major international markets.

More than ninety percent of our production is exported from our facilities in Uppsala to approximately 100 different countries around the world.

Mercodia provides a professional scientific support system by collaborating with customers and institutions worldwide to develop novel applications for existing products and unique diagnostics for emerging markets.

WHEN ACCURACY MATTERS

www.mercodia.com

Global Headquarters

Mercodia AB
Phone +46 18 57 00 70
Fax +46 18 57 00 80
E-mail info@mercodia.com

Sales Office USA

Mercodia Inc
Phone +1 (336) 725-8623
Fax +1 (336) 725-8673
E-mail info_usa@mercodia.com

Sales Office France

Mercodia France SAS
Phone +33 6 13 38 4802
Fax +46 18 57 00 80
E-mail info@mercodia.com

Sales Office Germany

Phone +49 211 163 568 79
Fax +46 18 57 00 80
E-mail info@mercodia.com